CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINAL ARTICLES</td>
<td></td>
</tr>
<tr>
<td>I. Manolov. Synthesis, structure investigations and properties of some 4-hydroxy coumarin derivatives.</td>
<td>3</td>
</tr>
<tr>
<td>M. Georgieva, A. Bienev and I. Nencheva. Isolation and characterization of isomers of pyrrole-hydrazone with possible tuberculostatic activity.</td>
<td>18</td>
</tr>
<tr>
<td>B. Nikolova-Mladenova, G. Momokov and D. Ivanov. Synthesis and physicochemical characterization of new salicylaldehyde benzoyl hydrazone derivatives with high cytotoxic activity.</td>
<td>32</td>
</tr>
<tr>
<td>L. Peykov, I. Pencheva, M. Manova and G. Petrova. HPLC study of binary and triple mixtures containing venlafaxine, citalopram and sibutramine.</td>
<td>41</td>
</tr>
<tr>
<td>B. Kostova, R. Popova and D. Rachev. Obtaining and optimization of matrices systems which contain drug with weak basic properties based on Kollidon® SR.</td>
<td>59</td>
</tr>
<tr>
<td>S. Georgieva and Y. Koleva. Metabolic estrogenic activity of some endocrine disruptor chemicals.</td>
<td>65</td>
</tr>
<tr>
<td>S. Lazarov, R. Nikolov, A. Momchilova and E. Yanev. Effects of nimesulide on the phospholipid composition of the alveolar surfactant in rats with model of the septic respiratory distress syndrome.</td>
<td>77</td>
</tr>
<tr>
<td>A. Stoinenova, A. Savova, M. Manova, G. Draganov, G. Petrova and A. Zlatkov. Medicine interactions with Ginkgo biloba.</td>
<td>83</td>
</tr>
<tr>
<td>H. Lebanon, E. Grigorov and I. Getov. Materiovigilance – Basic Concepts And Legislative Framework.</td>
<td>98</td>
</tr>
<tr>
<td>B. Kirilov, E. Grigorov and I. Getov. Study on the use of antioxidant vitamins on the bulgarian market.</td>
<td>104</td>
</tr>
<tr>
<td>D. Obrezhkova. Analytical study and quality control of bulgarian drugs with antioxidant activity.</td>
<td>108</td>
</tr>
</tbody>
</table>

Instructions To Authors

Instructions to Authors: Some technical requirements for manuscripts prepared for publication in *FARMACIA* (PDF files provided by the authors).
HPLC STUDY OF BINARY AND TRIPLE MIXTURES CONTAINING VENLAFAXINE, CITALOPRAM AND SIBUTRAMINE

L. Peykova¹, I. Pencheva¹, M. Manova² and G. Petrova²
¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, ²Department of Social Pharmacy, Faculty of Pharmacy, Medical University – Sofia

Summary. Analytical study for quality control of antidepressants from SSRIs and SNRIs groups was performed using HPLC methods. The obtained data from analysis of venlafaxine HCl, citalopram and sibutramine were compared on the base of ICH and European Pharmacopoeia criteria and on the developing the chromatographic and analytical parameters. The substances were examined as pure substances, model binary and triple mixtures and in drug formulations. The method was developed for the purposes of the analytical and the toxicological practices. The HPLC method was made in the following conditions: isocratic and gradient mode of Acetonitrile/Methanol in different ratios, UV – detection at 230 nm analytical wavelength, different flow rates and solutions, prepared at varied pH.

Key words: Venlafaxine, Citalopram, Sibutramine, Validation, System suitability test, HPLC

Introduction
The pharmaceutical companies could not benefit by the pharmaceuticals’ patent protection during the whole period of patent validity and aim to increase the patent life cycle of their products [18, 28].

Studies of the patent protection of antidepressants are relatively limited and focus on the juridical case for patent violation, information about the status of the active patents and territory of protection [5], barriers in front the generic entrance on the market [5, 6] requirements and practice of patent main-
taining [26, 24], influence of the patent protection on the market as well as on the legislation [8]. Serious concerns have been raised that the monopoly higher prices of patented products could negatively impact the access to medicines and thus the mental public health [12]. Manufacturers working on the performulation of the active substances invest more in promotion and thus additionally hamper the access [16].

Citalopram is an antidepressant drug of the selective serotonin reuptake inhibitor (SSRI) class.
Its chemical name is ((RS) – 1 - [3-(dimethylamino) propyl] – 1 - (4 – fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) (Fig. 1) and it is defined as hydrobromide salt.

![Fig. 1. Structure of citalopram](image)

Citalopram is an antidepressant of the serotonin-norepinephrine reuptake inhibitor (SNRI) class [1, 7, 23]. Its chemical name is (RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol (Fig. 2).

![Fig. 2. Structure of venlafaxine](image)

Venlafaxine is an antidepressant of the serotonin-norepinephrine reuptake inhibitor (SNRI) class [1, 7, 23]. Its chemical name is (RS)-1-[2-dimethylamino-1-(4-methoxyphenyl)-ethyl]cyclohexanol (Fig. 2).

![Fig. 2. Structure of venlafaxine](image)

Sibutramine is a neurotransmitter reuptake inhibitor that reduces the reuptake of serotonin (by 53%), norepinephrine (by 54%), and dopamine (by 16%), thereby increases the levels of these substances in synaptic clefts and helps enhance satiety; the serotonergic action, in particular, is thought to influence appetite. Its chemical name is (dimethyl-1-[1-(4-chlorophenyl)cyclobutyl]-N,N,3-trimethylbutan-1-amine), usually available as sibutramine hydrochloride monohydrate and it is structurally related to amphetamines [21, 30]. Its mechanism of action is distinct [3, 13]. The product is manufactured also under brand names Reductil, Meridia and Sibutrex [4, 15]. Recently, the usage of Sibutramine is under suspension by European regulations because of an intensive increasing of unlegislated distribution as supplement with unknown contamination (Fig. 3).

![Fig. 3. Structure of sibutramine](image)

There are several methods of analysis of venlafaxine, citalopram and sibutramine for each substance individually, but there is no method for identification and for quantitation of the mixture of the above substances [2, 3, 9, 11, 17, 19, 20, 25, 27, 29, 31]. The favorites are HPLC methods with different detectors because of higher performance and sensitivity than other methods used in pharmaceutical practice. On the other hand, the combination with other drugs, nutrition and supplements may cause changing of action because of production of associated complexes and salts. It is important to follow the stability and influence of same solutions and substances over its contamination in model mixtures and drug preparations as well as their derivatives and related substances [7, 32, 33].

The purpose of this study is the investigation of analytical parameters at different chromatographic conditions and development of a procedure containing HPLC methods for quality control of citalopram, venlafaxine and sibutramine – pure substances, in drug preparations and in model binary and triple mixtures.

Experimental

Chromatographic system:

The chromatographic procedure was carried out using:

- Liquid chromatograph Shimadzu LC – 10 Advp equipped with 4.6 x 150 mm column RP-18, ODS with particle size 5 μm; Detector SPD 10 AVvp – UV-VIS with fixed analytical wave lengths.

Chromatographic conditions:

Isocratic mobile phases, prepared by mixing of filtered and degassed acetonitrile:water 55:45 and 70:30 v/v respectively;
- 230 nm analytical wavelengths;
- column temperature 25°C;
- flow rates about 1.0 and 2.0 ml/min.

Reagents

Acetonitril HPLC grade, distilled water R (Reagents (R), European Pharmacopoeia 7.0), Methanol HPLC grade, reference substances venlafaxine HCl, citalopram and sibutramine (CRS).

Test preparation

- Test solutions were prepared by dissolving and mixing adequate and equal amounts of substances in mobile phase to obtain solutions with concentration in ratio 9 μg – 2 mg/ml.
Reference solutions were prepared by the same manner from CRS.

Results and discussion

HPLC methods for binary mixtures containing venlafaxine HCl and citalopram and triple mixtures containing venlafaxine HCl, citalopram and sibutramine were developed and validated. Analytical parameters specificity, repeatability, limit of detection, limit of quantitation and linearity were studied and determined in accordance with ICH criteria for validated procedures.

Validation of HPLC method for quantitative simultaneously determination of venlafaxine HCl and citalopram

1. Specificity
Specificity in respect of reagents – “Placebo” solution containing all reagents without active substances was prepared. There were no peaks in the chromatogram obtained from this solution with Rt of venlafaxine HCl and Rt of citalopram.

2. Repeatability
Six (6) equal solutions from homogenous samples containing venlafaxine HCl and citalopram were analysed by HPLC method. Standard deviation (SD) and relative SD (RSD) were found. The results are presented on Table 1.

3. Limit of detection:
9 μg for citalopram and 10 μg for venlafaxine HCl, established on the base of ratio noise–signal – 1:3.

4. Limit of quantitation:
15 μg for citalopram and 40 μg for venlafaxine HCl, established on the base of ratio noise–signal – 1:10.

5. Linearity:
The analytical parameter linearity was studied in concentration ratio 9 μg – 2 mg. The accordance between the Area of peaks, measured in absorption units (AU) and concentrations in g/ml is proportional in the intervals. The correlation coefficients were found to be about 0.99148 for venlafaxine HCl and 0.98853 for citalopram.

6. System suitability test
For system suitability test, determination of some chromatographic parameters such as retention time, resolution and column efficiency as number of theoretical plates were appointed for optimization of conditions. The results are shown on table 2. At the first mobile phase (methanol/acetonitrile (55:45 v/v) and flow rate about 1 ml/min, the resolution of binary mixture between venlafaxine HCl and citalopram is better than at the second (methanol/acetonitrile (70:30 v/v) (fig. 4) but the change of flow rate effects a higher column efficiency which is more suitable in assay and purity tests. For identification and assay tests of triple mixture more acceptable is flow rate about 2 ml/min at the same mobile phase because the resolution and column efficiency are definitely better (fig. 5).

![Fig. 4. Chromatogram of binary mixture containing venlafaxine HCl and citalopram at mobile phase methanol/acetonitrile (55:45 v/v) and flow rate 1 ml/min](image-url)

![Fig. 5. Chromatogram of triple mixture containing venlafaxine HCl, citalopram and sibutramine at mobile phase methanol/acetonitrile (70:30 v/v) and flow rate 2 ml/min](image-url)

Table 1. Repeatability of samples containing venlafaxine HCl and citalopram

<table>
<thead>
<tr>
<th>№</th>
<th>Area of Venlafaxine HCl (AU) (0.004 g/ml)</th>
<th>Area of Citalopram (AU) (0.001 g/ml)</th>
<th>(\bar{X})</th>
<th>SD (AU)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37934</td>
<td>35179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37646</td>
<td>39539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>41577</td>
<td>35179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39754</td>
<td>39480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>39766</td>
<td>32184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>37982</td>
<td>35192</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For venlafaxine HCl: 39109.8(3)
For citalopram: 36625.5

For venlafaxine HCl: 1398.2022
For citalopram: 2039.3716

For venlafaxine HCl: 3.57
For citalopram: 5.56
Table 2. Retention time, flow rates, resolution of citalopram toward other substances and column efficiency at different mobile phases for binary mixture containing venlafaxine HCl and citalopram and triple mixture containing venlafaxine HCl, citalopram and sibutramine

<table>
<thead>
<tr>
<th>Mobile phase</th>
<th>Flow rate</th>
<th>Retention time (min)</th>
<th>Resolution</th>
<th>Number of theoretical plates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol/acetonitrile (55:45 v/v)</td>
<td>1 ml/min</td>
<td>1.95 for venlafaxine HCl 3.36 for citalopram</td>
<td>1.66</td>
<td>750 for venlafaxine HCl 2840 for citalopram</td>
</tr>
<tr>
<td>Methanol/acetonitrile (70:30 v/v)</td>
<td>1 ml/min</td>
<td>1.12 for venlafaxine HCl 1.67 for citalopram</td>
<td>0.98</td>
<td>410 for venlafaxine HCl 2970 for citalopram</td>
</tr>
<tr>
<td>Methanol/acetonitrile (70:30 v/v)</td>
<td>2 ml/min</td>
<td>4.71 for venlafaxine HCl 8.09 for citalopram</td>
<td>1.38</td>
<td>270 for venlafaxine HCl 6200 for citalopram</td>
</tr>
<tr>
<td>Methanol/acetonitrile (70:30 v/v)</td>
<td>1 ml/min</td>
<td>2.01 for venlafaxine HCl 2.97 for citalopram 3.48 for sibutramine</td>
<td>0.79 0.91</td>
<td>380 for venlafaxine HCl 2210 for citalopram 330 for sibutramine</td>
</tr>
<tr>
<td>Methanol/acetonitrile (70:30 v/v)</td>
<td>2 ml/min</td>
<td>4.41 for venlafaxine HCl 6.91 for citalopram 8.11 for sibutramine</td>
<td>1.34 1.31</td>
<td>580 for venlafaxine HCl 3390 for citalopram 1020 for sibutramine</td>
</tr>
</tbody>
</table>

Conclusion

HPLC procedure for quality control of antidepressants venlafaxine HCl, citalopram and sibutramine was performed at different chromatographic conditions. The methods are validated in respect of purposes of pharmaceutical and toxicological practices for binary mixtures containing venlafaxine HCl and citalopram and triple mixtures containing venlafaxine HCl, citalopram and sibutramine.

Acknowledgement. This work was supported by Grant №13 from 2011 year from the Council of Medicinal Science at Medical University – Sofia

References

Address for correspondence:
Lily Peikova
Faculty of Pharmacy
Medical University
2 Dunav str.
1000, Sofia, Bulgaria
e-mail: lily_peikova@yahoo.com